
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 283 (2005) 875–890
0022-460X/$ -

doi:10.1016/j.

�Correspon
E-mail add
www.elsevier.com/locate/jsvi
Behavior of micropolar cubic crystal due to various sources

Rajneesh Kumara,�, Praveen Ailawaliab

aDepartment of Mathematics, Kurukshetra University, Kurukshetra 136–119, Haryana, India
bDepartment of Applied Sciences, I.E.E.T., Makhnumajra, Baddi, Distt. Solon, H.P., India

Received 21 November 2003; received in revised form 16 April 2004; accepted 17 May 2004

Available online 19 March 2005
Abstract

The response of a micropolar cubic crystal due to various sources acting at the free surface has been
studied. The eigenvalue approach using integral transforms has been employed and the transforms have
been inverted by using a numerical technique. The displacement, stress and microrotation components in
the physical domain are obtained numerically. The results of displacement and stresses have been compared
for micropolar cubic crystal and micropolar isotropic solid. The numerical results are illustrated graphically
for a particular model.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of classical elasticity is based on the assumption that the microstructure of a
material does not effect the descriptions of the mechanical behavior. However, material response
to external stimuli depends on the motions of its inner structures. The discrepancies between the
classical theory and the experiments are observed, indicating that the microstructure might be
important. Some examples are: the stress concentrations in the neighborhood of holes, notches
and cracks. Elastic vibrations characterized by high frequency and small wavelength, particularly
in composites, materials containing laminates, fibers or grains.
Voigt [1] attempted to eliminate these discrepancies by suggesting that the interaction between

the two particles of a body through an area element is transmitted not only by the action of a force
see front matter r 2004 Elsevier Ltd. All rights reserved.
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vector but also by a moment (couple) vector. This led to the existence of couple stress in elasticity.
Later Cosserat and Cosserat [2] explained a unified theory based on the concept of both linear
displacement and rotation of every material particle during the deformation and is known as
Cosserat theory of elasticity. In this theory, the deformation of the body is described by
displacement vector and an independent rotation vector. The general relations and equations of
the Cosserats theory have been derived by several authors (Kuvshinskii and Aero [25], Palmov
[26]).
Eringen and Suhubi [3] and Suhubi and Eringen [4] introduced the theories of microelastic

solids and microfluids in which the micromotions of the material particles contained in a
macrovolume element with respect to its centroid are taken into account in an average sense.
Materials affected by such micromotions and microdeformations are called micromorphic
materials [5]. Eringen [6,7] developed theories for a subclass of micromorphic materials which are
called micropolar media and these materials show microrotational effects and microrotational
inertia. Here, the material particles in a volume element can undergo only rigid rotational motions
about their center of mass. The motion described here is not only by a deformation but also by a
micro-rotation giving six degrees of freedom. The interaction between two parts of a body is
transmitted not only by a force but also a torque, resulting in asymmetric force stresses and couple
stresses. Physically, solid propellant grains, polymeric materials and fiber glass are examples for
such materials. The theory is expected to find applications in the treatment of mechanics of
granular materials, composites fibrous materials and particularly microcracks and microfractures.
Following various methods, the elastic fields of various loadings, inclusion and inhomogeneity

problems, and interaction energy of point defects and dislocation arrangement have been
discussed extensively in the past. Generally all materials have elastic anisotropic properties which
mean the mechanical behavior of an engineering material is characterized by the direction
dependence. The formulation and solution of anisotropic problems is far more difficult and
cumbersome than its isotropic counterpart, due to the large number of elastic constants involved
in the calculation. In the recent years the elastodynamic response of anisotropic continuum has
received the attention of several researchers. In particular, transversly isotropic and orthotropic
materials, which may not be distinguished from each other in plane strain and plane stress, have
been more regularly studied. The orthotropic material has the symmetry of its elastic properties
with respect to two orthogonal planes, whereas a cubic material is a special case of orthotropic
material that has the same properties along two axes and different properties along the third axis
and is invariant to an additional change of coordinates. Kumar and Choudhary [8–10] discussed
different types of problems in a micropolar orthotropic continua.
A wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al, etc., which are frequently used

substances, belong to cubic materials. The cubic materials have nine planes of symmetry whose
normals are on the three coordinate axes and on the coordinate planes making an angle p=4 with
the coordinate axes. With the chosen coordinate system along the crystalline directions, the
mechanical behavior of a cubic crystal can be characterized by four independent elastic constants
A1;A2;A3 and A4:
To understand the crystal elasticity of a cubic material, Chung and Buessem [11] presented a

convenient method to describe the degree of the elasticity anisotropy in a given cubic crystal.
Later, Lie and Koehler [12] used a Fourier expansion scheme to calculate the stress fields caused
by a unit force in a cubic crystal. Steeds [13] gave a complete discussion on the displacements,
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stresses and energy factors of the dislocations for two-dimensional anisotropic materials.
Boulanger and Hayes [14] investigated inhomogeneous plane waves in cubic elastic materials.
Bertram et al. [15] discussed generation of discrete isotropic orientation distributions for linear
elastic cubic crystals. Kobayashi et al. [16] investigated anisotropy and curvature effects for
growing crystals. Domanski and Jablonski [17] studied resonances of nonlinear elastic waves in
cubic crystal. Destrade [18] considered the explicit secular equation for surface acoustic waves in
monoclinic elastic crystals. Zhou and Ogawa [19] investigated elastic solutions for a solid rotating
disk with cubic anisotropy. Minagawa et al. [20] discussed the propagation of plane harmonic
waves in a cubic micropolar medium. Recently, Kumar and Rani [21] studied time harmonic
sources in a thermally conducting cubic crystal. However, no attempt has been made to study
source problems in micropolar cubic crystals.
The present problem is concerned with the determination of displacement, stress and

microrotation components in a homogeneous micropolar cubic crystal half space due to
mechanical sources. The problem has practical applications in the field of geomechanics,
engineering, fiber-wound composites and laminated composite materials.
2. Formulation and solution of the problem

We consider a homogeneous, micropolar cubic crystal, elastic half-space in the undeformed
state. We take the origin on the plane surface and y-axis normally into the medium, which is
represented by yX0: A normal point force is assumed to be acting at the origin of the rectangular
Cartesian coordinate system ðx; y; zÞ: If we restrict our analysis to plane strain parallel to x–y

plane with displacement vector ~u ¼ ðu1; u2; 0Þ and microrotation vector ~f ¼ ð0; 0;f3Þ then the field
equations and constitutive relations for such a medium in the absence of body forces and body
couples can be written by following the equations given by Minagawa et al. [20] as

A1
q2u1

qx2
þ A3

q2u1

qy2
þ ðA2 þ A4Þ

q2u2
qxqy

þ ðA3 � A4Þ
qf3

qy
¼ r

q2u1
qt2

, (1)

A3
q2u2

qx2
þ A1

q2u2

qy2
þ ðA2 þ A4Þ

q2u1
qxqy

� ðA3 � A4Þ
qf3

qx
¼ r

q2u2
qt2

, (2)

B3r
2f3 þ ðA3 � A4Þ

qu2

qx
�
qu1

qy

� �
� 2ðA3 � A4Þf3 ¼ rj

q2f3

qt2
, (3)

t22 ¼ A2
qu1

qx
þ A1

qu2

qy
, (4)

t21 ¼ A4
qu2

qx
� f3

� �
þ A3

qu1

qy
þ f3

� �
, (5)

m23 ¼ B3
qf3

qy
. (6)
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In these relations, we have used the following notations: t22, t21—components of the force stress
tensor, m23—component of the couple stress tensor, u1, u2—components of displacement vector ~u;
f3—component of microrotation vector ~f; A1;A2;A3;A4; B3—characteristic constants of the
material, r—the density and j—the microinertia .
Introducing the dimensionless variables defined by the expressions:

x0 ¼
on

c1
x; y0 ¼

on

c1
y; u0

1 ¼
on

c1
u1; u0

2 ¼
on

c1
u2; f0

3 ¼
A1

A4
f3,

ft022; t
0
21g ¼

ft22; t21g

A1
; m0

23 ¼
c1

B3on
m23; t0 ¼ ont; a0 ¼

on

c1
a, ð7Þ

where

on2 ¼
A4 � A3

rj
; c21 ¼

A1

r
. (8)

Using Eq. (7), the system of Eqs. (1)–(3) reduce to (dropping the primes),

A1
q2u1

qx2
þ A3

q2u1

qy2
þ ðA2 þ A4Þ

q2u2
qxqy

þ
A4ðA3 � A4Þ

A1

qf3

qy
¼ rc21

q2u1
qt2

, (9)

A3
q2u2
qx2

þ A1
q2u2
qy2

þ ðA2 þ A4Þ
q2u1

qxqy
�

A4ðA3 � A4Þ

A1

qf3

qx
¼ rc21

q2u2

qt2
, (10)

B3
A4on2

A1c
2
1

r2 f3 þ ðA3 � A4Þ
qu2

qx
�

qu1

qy

� �
� 2

A4ðA3 � A4Þ

A1
f3 ¼ rjon2 A4

A1

q2f3

qt2
. (11)

The initial and radiation conditions are given by

uiðx; y; 0Þ ¼ _uiðx; y; 0Þ ¼ 0; i ¼ 1; 2,

f3ðx; y; 0Þ ¼ _f3ðx; y; 0Þ ¼ 0 ð12Þ

and

u1ðx; y; tÞ ¼ u3ðx; y; tÞ ¼ f3ðx; y; tÞ ¼ 0 for t40; when y ! 1: (13)

Applying Laplace transform with respect to time ‘t’ defined by

ūiðx; y; pÞ; f̄3ðx; y; pÞ
� �

¼

Z1
0

ui x; y; tð Þ; f3ðx; y; tÞ
� �

e�pt dt; i ¼ 1; 2 (14)

and then Fourier transform with respect to ‘x’ defined by

~uiðx; y; pÞ; ~f3ðx; y; pÞ
� �

¼

Z1
�1

ūiðx; y; pÞ; f̄3ðx; y; pÞ
� �

eixx dx; i ¼ 1; 2 (15)

on Eqs. (9)–(11) with the help of initial conditions, we obtain

~u00
1 ¼ b11 ~u1 þ e12 ~u

0
2 þ e13 ~f

0

3, (16)
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~u00
2 ¼ b22 ~u2 þ e21 ~u

0
1 þ b23

~f3, (17)

~f
00

3 ¼ b33
~f3 þ e31 ~u

0
1 þ b32 ~u2, (18)

where primes in Eqs. (16)–(18) represents differentiation with respect to y and

b11 ¼
rc21p

2 þ x2A1

A3
; b22 ¼

rc21p
2 þ x2A3

A1
; b23 ¼ �

ixA4ðA3 � A4Þ

A2
1

,

b32 ¼
ixc21A1ðA3 � A4Þ

on2A4B3
; b33 ¼

1

B3
x2B3 þ rjc21p

2 þ 2ðA3 � A4Þ
c21
on2

� �
,

e13 ¼ �
A4ðA3 � A4Þ

A1A3
; e21 ¼

ixðA2 þ A4Þ

A1
; e31 ¼

A1ðA3 � A4Þc
2
1

A4B3on2
,

e12 ¼
ixðA2 þ A4Þ

A3
. ð19Þ

Eqs. (16)–(18) may be written as

d

dy
W ðx; y; pÞ ¼ Aðx; pÞW ðx; y; pÞ, (20)

where

W ¼
V

V 0

� �
; A ¼

O I

An

1 An

2

 !
; V ¼

~u1

~u2

~f3

0
B@

1
CA;

An

1 ¼

b11 0 0

0 b22 b23

0 b32 b33

0
B@

1
CA; An

2 ¼

0 e12 e13

e21 0 0

e31 0 0

0
B@

1
CA; (21)

O and I are, respectively, zero and identity matrix of order 3.
To solve Eq. (20), we assume

W ðx; y; pÞ ¼ X ðx; pÞeqy, (22)

which leads to eigenvalue problem. The characteristic equation corresponding to matrix A is given
by

A � qI
�� �� ¼ 0, (23)

which on expansion provides us

q6 þ l1q4 þ l2q2 þ l3 ¼ 0, (24)
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where

l1 ¼ �ðe12e21 þ e13e31 þ b11 þ b22 þ b33Þ,

l2 ¼ e12ðe21b33 � b23e31Þ þ e13ðb22e31 � e21b32Þ þ b22b33 � b23b32 þ b11ðb22 þ b33Þ,

l3 ¼ b11ðb23b32 � b22b33Þ. ð25Þ

The eigenvalues of the matrix A are characteristic roots of Eq. (24). The vectors X ðx; pÞ
corresponding to the eigenvalues qs can be determined by solving the homogeneous equation

½A � qI X ðx; pÞ ¼ 0. (26)

The set of eigenvectors X sðx; pÞ; s ¼ 1; 2 . . . 6 may be obtained as

X sðx; pÞ ¼
X s1ðx; pÞ

X s2ðx; pÞ

 !
, (27)

where

X s1ðx; pÞ ¼

qs

as

bs

0
B@

1
CA; X s2ðx; pÞ ¼

q2
s

asqs

bsqs

0
B@

1
CA; q ¼ qs; s ¼ 1; 2; 3, (28)

X j1ðx; pÞ ¼

�qj

aj

bj

0
B@

1
CA; X j2ðx; pÞ ¼

q2
j

�ajqj

�bjqj

0
BB@

1
CCA; j ¼ s þ 3; q ¼ �qs; s ¼ 1; 2; 3 (29)

and

as ¼
b11 b23 � q2

s ðb23 þ e21 e13Þ

rs

,

bs ¼
q2s e31 þ as b32

q2s � b33
,

rs ¼ q2s e13 þ e12 b23 � b22 e13. ð30Þ

The solution of Eq. (22) is given by

W ðx; y; pÞ ¼
X3
s¼1

½DsX sðx; pÞ exp ðqsyÞ þ Dsþ3 X sþ3ðx; pÞ exp ð�qsyÞ. (31)

The transformed displacements and microrotation satisfying the radiation conditions (13) are
given by

~u1 ¼ �q1D4 expð�q1yÞ � q2D5 expð�q2yÞ � q3D6 expð�q3yÞ,

~u2 ¼ a1D4 expð�q1yÞ þ a2D5 expð�q2yÞ þ a3D6 expð�q3yÞ,

~f3 ¼ b1D4 expð�q1yÞ þ b2D5 expð�q2yÞ þ b3D6 expð�q3yÞ. ð32Þ



ARTICLE IN PRESS

R. Kumar, P. Ailawalia / Journal of Sound and Vibration 283 (2005) 875–890 881
3. Boundary conditions and application

Mechanical sources acting on the surface of the half-space: The boundary conditions in this case
are

t22 ¼ �FcðxÞdðtÞ; t21 ¼ m23 ¼ 0, (33)

where dðtÞ is Dirac delta function, F is the magnitude of force applied and cðxÞ specify the vertical
load distributed function along x-axis.
Using Eqs. (7) and then applying Laplace and Fourier transforms from Eqs. (14) and (15) on

system of Eqs. (33) and with the help of Eqs. (32), we get the transformed displacement,
microrotation and stresses as

~u2 ¼ �
F

D
a1D

0
1 e

�q1y � a2D
0
2 e

�q2y þ a3D
0
3 e

�q3y
� �

, (34)

~t22 ¼ �
F

D
r1D

0
1 e

�q1y � r2D
0
2 e

�q2y þ r3D
0
3 e

�q3y
� �

, (35)

~m23 ¼
FA4

A1D
b1q1D

0
1 e

�q1y � b2q2D
0
2 e

�q2y þ b3q3D
0
3 e

�q3y
� �

, (36)

where

D ¼
1

~cðjÞ
½r1D

0
1 � r2D

0
2 þ r3D

0
3; D0

1;2;3 ¼
~cðjÞ ½s2;1;1 b3;3;2 q3;3;2 � s3;3;2 b2;1;1 q2;1;1,

rY ¼ qY ix
A2

A1
� aY

� �
; sY ¼ �ixaYA4 þ q2YA3 þ

A4

A1
ðA3 � A4ÞbY,

Y ¼ 1; 2; 3. ð37Þ
3.1. Concentrated normal force

In order to determine displacements, microrotation and stresses due to concentrated normal
force described as Dirac delta function cðxÞ ¼ dðxÞ must be used. The Fourier transform of cðxÞ
with respect to pair ðx; xÞ will be ~cðxÞ ¼ 1:
3.2. Uniformly distributed force

The solution due to uniformly distributed force applied on the half-space is obtained by setting

cðxÞ ¼
1 if jxjpa;

0 if jxj4a;

(

in Eqs. (33). The Fourier transform with respect to the pair ðx; xÞ for the case of a uniform strip
load of unit amplitude and width 2a applied at the origin of the coordinate system ðx ¼ y ¼ 0Þ in
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dimensionless form after suppressing the primes becomes

~c xð Þ ¼ 2 sin
xc1a

on

� �
x

� �
; xa0. (38)

3.3. Linearly distributed force

The solution due to linearly distributed force is obtained by substituting

cðxÞ ¼
1� jxj

a
if jxjpa;

0 if jxj4a:

"
(39)

The Fourier transform in case of linearly distributed force applied at the origin of the system in
dimensionless form are

~cðjÞ ¼
2½1� cos ðxc1a=onÞ

x2c1a=on
. (40)

The expressions for displacement, force stress and couple stress may be obtained as in Eqs.
(34)–(36), by replacing ~cðjÞ by 1, 2 sin ðxc1a=onÞ=x

� �
and 2½1� cos ðxc1a=onÞ=x2c1a=on in case of

concentrated force, uniformly distributed force and linearly distributed force, respectively.
Particular case: Taking A1 ¼ lþ 2mþ K ; A2 ¼ l; A3 ¼ mþ K ; A4 ¼ m; B3 ¼ g; we obtain the

corresponding expressions for the micropolar isotropic medium. These results tally with the one if
we solve the problem in micropolar isotropic medium.
4. Inversion of the transform

The transformed displacements and stresses are functions of y, the parameters of Laplace and
Fourier transforms p and x; respectively, and hence are of the form ~f ðx; y; pÞ: To get the function
in the physical domain, first we invert the Fourier transform using

f ðx; y; pÞ ¼
1

2p

Z1
�1

e�ixx ~f ðx; y; pÞdx

¼
1

p

Z1
0

fcosðxxÞf e � i sinðxxÞf ogdx, ð41Þ

where fe and fo are even and odd parts of the function ~f ðx; y; pÞ; respectively. Thus, expressions
(34)–(36) give us the transform f ðx; y; pÞ of the function f ðx; y; tÞ:
Following Honig and Hirdes [22] the Laplace transform function f ðx; y; pÞ can be inverted to

f ðx; y; tÞ:
The last step is to evaluate the integral in Eq. (41). The method for evaluating this

integral is given by Press et al. [23] and which involves the use of Rhomberg’s integration
with adaptive step size. This, also uses the results from successive refinement of the extended
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trapezoidal rule followed by extrapolation of the results to the limit when the step size
tends to zero.
5. Numerical results and discussions

For numerical computations, we take the following values of relevant parameters for
micropolar cubic crystal as

A1 ¼ 13:97� 1010 dyn=cm2; A3 ¼ 3:2� 1010 dyn=cm2,

A2 ¼ 13:75� 1010 dyn=cm2; A4 ¼ 2:2� 1010 dyn=cm2; B3 ¼ 0:056� 1010 dyn.

For the comparison with micropolar isotropic solid, following Gauthier [24], we take the
following values of relevant parameters for the case of aluminium epoxy composite as

r ¼ 2:19 g=cm3; l ¼ 7:59� 1010 dyn=cm2; m ¼ 1:89� 1010 dyn=cm2,

K ¼ 0:0149� 1010 dyn=cm2; g ¼ 0:0268� 1010 dyn; j ¼ 0:00196 cm2.

The values of normal displacement U2 ¼ ðu2=F Þ; normal force stress T22 ¼ ðt22=F Þ and
tangential couple stress M23 ¼ ðm23=F Þ for a micropolar cubic crystal (MCC) and
micropolar isotropic solid (MIS) have been studied at t ¼ 0:1; 0:2 and 0:5 and the
variations of these components with distance x have been shown by (a) solid line (——)
for MCC and dashed line (- - - - - - - -) for MIS at t ¼ 0:1; (b) solid line with centered symbol (x—
x—x) for MCC and dashed line with centered symbol (x- - -x- - -x) for MIS at t ¼ 0:2 and (c) solid
line with centered symbol (3—3—3) for MCC and dashed line with centered symbol (3- - -3- - -3)
for MIS at t ¼ 0:5: These variations are shown in Figs. 1–9. The comparison between a cubic
crystal and an isotropic solid are shown. The computations are carried out for y ¼ 1:0 in the
range 0pxp10:0:
6. Discussions for various cases

6.1. Concentrated normal force

The variations of normal displacement and normal force stress are opposite in nature. It is
observed from Fig. 1 that the values of normal displacement, very close to the point of application
of source, are more for MCC at a particular time but the values for both MCC and MIS decreases
with increase in time.
The variations of normal force stress are more oscillatory for MCC as compared to MIS. These

variations depicted in Fig. 2, decreases with increase in horizontal distance. The variations of
normal force stress for both MCC and MIS are quite close to each other in the initial range at
t ¼ 0:1: However, the difference in variations of normal force stress among both the solids
increases with increase in time.
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Fig. 1. Variation of normal displacement U2ð¼ u22=F Þ with horizontal distance x for concentrated force.

Fig. 2. Variation of normal force stress T22ð¼ t22=F Þ with horizontal distance x for concentrated force.
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Fig. 3. Variation of tangential couple stress M23ð¼ m23=F Þ with horizontal distance x for concentrated force.
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The values of tangential couple stress for MCC at t ¼ 0:1 lies in a very short range. Also the
values for MCC, very close to the point of application of source, increases with increase in time.
The magnitude of oscillations of tangential couple stress decreases with increase in horizontal
distance x. These variations of tangential couple stress are shown in Fig. 3.
6.2. Uniformly distributed force

The values of normal displacement for MCC lies in a short range as compared to the values for
MIS. The magnitude of oscillations of normal displacement for MIS decreases with increase in
time as shown in Fig. 4. Similar to the nature for normal displacement, the values of normal force
stress and tangential couple stress are less for MCC in comparison to the values for MIS. It is
observed from Fig. 5 that the values of normal force stress for both MCC and MIS rises initially
but the rise in values is more sharp for MIS. The values of normal force stress for MIS at t ¼ 0:1
and t ¼ 0:2 have been demagnified by 10.
It is quite interesting to see that while the values of tangential couple stress for MCC lies in a

very short range, the values for MIS, very close to the point of application of source, increases
with time. The variations of tangential couple stress for uniformly distributed force are shown in
Fig. 6. To compare the variations of the two solids the values of tangential couple stress for MIS
at t ¼ 0:1; 0:2 and 0:5 have been demagnified by 10.
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Fig. 4. Variation of normal displacement U2ð¼ u22=F Þ with horizontal distance x for uniformly distributed force.
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6.3. Linearly distributed force

The variations of normal displacement and normal force stress for both MCC and MIS and for
t ¼ 0:1 and t ¼ 0:2 are similar in nature. The nature of normal displacement and normal force
stress among themselves are opposite in nature. The values of normal displacement decreases with
increase in distance x whereas the values of normal force stress increases. It is evident from Figs. 7
and 8 depicting the variations of normal displacement and normal force stress respectively that
contrary to the variations at t ¼ 0:1 and t ¼ 0:2; the variations at t ¼ 0:5 are oscillatory in nature.
The values of tangential couple stress for MIS are less as compared to the values for MCC. The

values of tangential couple stress for MCC increases with increase in distance x but the values for
MIS first increases and then decreases with increase in horizontal distance. The variations of
tangential couple stress shown in Fig. 9 shows that the values for both MCC and MIS converges
to zero as the source moves away from the point of application. Also the variations for both solids
are compared after magnifying the values for MIS by 10.
7. Conclusion

The properties of a body depend largely on the direction of symmetry. The variations of all the
quantities are oscillatory in nature when concentrated force or uniformly distributed force is
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Fig. 5. Variation of normal force stress T22ð¼ t22=F Þ with horizontal distance x for uniformly distributed force.

Fig. 6. Variation of tangential couple stress M23ð¼ m23=F Þ with horizontal distance x for uniformly distributed force.

R. Kumar, P. Ailawalia / Journal of Sound and Vibration 283 (2005) 875–890 887



ARTICLE IN PRESS

Fig. 7. Variation of normal displacement U2ð¼ u22=F Þ with horizontal distance x for linearly distributed force.

Fig. 8. Variation of normal force stress T22ð¼ t22=F Þ with horizontal distance x for linearly distributed force.
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Fig. 9. Variation of tangential couple stress M23ð¼ m23=FÞ with horizontal distance x for linearly distributed force.
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applied on the surface. Also the values of normal force stress and tangential couple stress are large
for MIS when uniformly distributed force is applied but on the application of linearly distributed
force, the values of tangential couple stress for MIS decreases in comparison to the values for
MCC.
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